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A numerical study of the superharmonic instabilities of short-crested waves on water 
of finite depth is performed in order to measure their time scales. It is shown that these 
superharmonic instabilities can be significant - unlike the deep-water case - in parts of 
the parameter regime. New resonances associated with the standing wave limit are 
studied closely. These instabilities ‘contaminate’ most of the parameter space, 
excluding that near two-dimensional progressive waves ; however, they are significant 
only near the standing wave limit. The main result is that very narrow bands of both 
short-crested waves ‘close ’ to two-dimensional standing waves, and of well developed 
short-crested waves, perturbed by superharmonic instabilities, are unstable for depths 
shallower than approximately a non-dimensional depth d = 1 ; the study is performed 
down to depth d = 0.5 beyond which the computations do not converge sufficiently. As 
a corollary, the present study predicts that these very narrow sub-domains of short- 
crested wave fields will not be observable, although most of the short-crested wave 
fields will be. 

1. Introduction 
For over two decades, water waves and their stability have been the subject of very 

intensive study in terms of direct measurements, of computations and from a 
theoretical point of view. Many authors have contributed to a better understanding of 
water wave motion ; most have focused their analysis on two-dimensional progressive 
Stokes waves. The study of pure Stokes waves is now nearly complete, except for the 
development of wave breaking which is a major aspect of interest. All these studies 
appear to be very helpful if one intends to extend analysis to more complex flows, like 
standing waves or three-dimensional waves, since the results obtained and the 
numerical and experimental procedures are clearly settled. The study of three- 
dimensional waves is developing because (i) it provides a more realistic description of 
the ocean and (ii) the field of research has been clarified, especially since Roberts (1983) 
described some evolution properties like harmonic resonances, which occur in a 
symmetrical and monophase short-crested wave field. These waves may be produced 
by a sea-wall reflection of a two-dimensional progressive wave field propagating at an 
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angle H to the normal to the wall, or by two two-dimensional progressive waves of the 
same frequency and the same wavelength intersecting at an angle y so that 
B = ( x - y ) / 2 .  These pure short-crested wave forms have been calculated: Fuchs (1952) 
obtained second-order solutions, Chappelear ( 1961) extended them to third order. 
Hsu, Tsuchiya & Silvester (1979) also calculated a third-order expansion in 
dimensionless form for water of finite depth. These solutions were extended analytically 
by Ioualalen (1993) up to the fourth (and fifth) order using an algebraic manipulator. 
Roberts & Peregrine ( 1983) calculated a sixth-order expansion for long-crested waves, 
while Roberts ( 1  983) and Marchant & Roberts (1987) computed highly nonlinear 
short-crested waves using a perturbation method up to 27th and 35th orders 
respectively for deep water and finite-depth water respectively. Fully numerical 
computations have been performed by Roberts & Schwartz (1983) and Bryant (1985). 
One of the properties of these waves, absent in Stokes waves, is the occurrence of 
harmonic resonance. Roberts ( 1983) described how the perturbation series has 
everywhere a zero radius of convergence. However, he could extract some useful 
results, use Pade approximation to detect poles of truncated series, and the Shanks 
transform to attain numerical convergence for finite-amplitude waves. From his 
analysis, he deduced that most of these resonances are of very high order: the error 
produced by a truncation at order N of the series expansion (and so ignoring all the 
higher-order resonances) is of order h N / 3 ,  where h is the wave steepness. This relatively 
good accuracy is not surprising since pole-zero pairs are extremely close together, 
showing the weakness of the resonances. This result was confirmed by Ioualalen & 
Kharif (1993, 1994, hereafter referred to as IK 93, 94), who showed that instabilities 
associated with these harmonic resonances occur as sporadic ' bubbles' of instability. 
The authors explained the generation of these instabilities as a collision of two 
superharmonic modes at zero frequency, their growth rates being very weak compared 
to subharmonic instabilities. The strongest superharmonic growth rates are at least two 
orders in h lower than the subharmonic ones. This result suggests that these resonances 
are unlikely to be significant because they will not have time to develop, as 
subharmonic instabilities have a much more rapid growth. The results on subharmonic 
time scales were confirmed by Badulin et al. (1995) using a Hamiltonian weakly 
nonlinear formulation. 

The purpose of the present study is to extend the work reported in IK 93 to water 
of finite depth. The harmonic resonances do not vanish, but one can expect that their 
time scales will be modified since the wave dispersion depends on the water depth d. 
This study was also motivated by the emergence of new harmonic resonances arising 
for finite depth, in particular in the vicinity of the standing wave limit B = 0" - 
resonances noted by Mercer & Roberts (1994) in computations of finite-depth 
standing waves. These new instabilities, perhaps due to the weakly dispersive nature 
of shallow-water waves, persist for angles where the three-dimensionality is well 
developed, see Marchant & Roberts (1987). 

Experiments on finite-depth short-crested waves have been performed by Hammack, 
Scheffner & Segur (1989, 1991) and Hammack et al. ( 1  995), and their occurrence noted 
by Peregrine (1985). Both suggest that short-crested waves are observable over a 
certain time when the waves do not change their shape. In the present numerical study, 
quantitative comparisons with these experiments are performed and investigations are 
carried out to determine whether the waves are typically unsteady for some ranges of 
depths d and angles 0. 
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2. Mathematical formulation 

2.1. Introduction 
We consider short-crested surface gravity waves on an inviscid incompressible fluid of 
finite depth, where the flow is assumed irrotational. The governing equations are 

v=q5 = 0 

q5z = 0 

(2.3) 

(2.4) 

where d is the depth of the fluid, q5(.x, y, z, t )  is the velocity potential and z = 7 / ( x ,  y, t )  
is the equation of the free surface. As in Hsu et al. (1979), equations (2.1)-(2.4) are 
given in a dimensionless form with respect to the reference length 1 / k  and the reference 
time (gk)-’l2, where g is the gravitational acceleration and k the wavenumber of the 
incident wave train. 

In order to perform the linear stability analysis, we define a reference frame where 
steady solutions (v,$) of equations (2.1 )-(2.4) are available. Define a frame of reference 
(x*,y*,,-*, t*),  so that x* = x -c t ,  y* = y, z* = z and t* = t ;  c is the celerity of the 
propagating wave train and is equal to w/u, o being the frequency of the wave and 
a = sin 8 is the xu-wavenumber, the y-wavenumber being B = cos 8. Following IK 93, 
define 

‘1(.x*,.”’*, t*) = 7(x*,y*) + y/’(.x*,y*, t*), (2.5) 

$(x*,y*, z*, t”) = &x*, y*, z*)  + $’(x*, y*, z*, t* ) ,  (2.6) 

where we assume that the surface elevation and the velocity potential are linear 
superpositions of a steadily propagating unperturbed wave (T,  6) and infinitesimal 
unsteady perturbations ( r l ‘ ,  4’) where rt’ + ,q and q5’ < 6. 

Expressions (2.5) and (2.6) are substituted into equations (2.3) and (2.4), which have 
been transformed into the new frame of reference. The new set is then linearized 
around the unperturbed wave, and we retain the leading-order (zero-order), which 
governs the propagating unperturbed wave, and the first-order perturbation equations, 
which we use to perform the stability analysis. 

2.2. tinperturbed wat’e solutions 

In the frame of reference (x*, y*, z*,  t*) moving with the wave, the leading-order 
equations admit steady unperturbed solutions ~ ( x ,  y) and &.x, y, z )  of the following 
form. where asterisks are henceforth omitted for clarity : 

x 

5 hi c, , , ,cos(n~as)cos(n~y),  
i = 1  m , n  

x 

3 h l q ,  where y m n  = (m2u2 + tz2B2)’/’. 
1=0 



4 M .  Ioualalen, A .  J .  Roberts and C. Kharif' 

FIGURE 1. Free surfaces and contours of short-crested waves for angle 0 = 40", wave steepness 
h = 0.20, and depths (a) d = 0.8 and ( h )  d = 2.0. Surface heights have been magnified. 

These solutions represent doubly periodic Fourier series expansions in a small 
parameter h, the wave steepness, defined as half the non-dimensional peak-to-trough 
height, since the peak of the wave is fixed at (x, y) = (0,O): 

h = $[q(O,  0 )  - V ( K ,  O)]. (2.8) 

Truncated expansions have been computed by Marchant & Roberts (1987), using 
Pad6 approximation or Shanks transform to attain convergence. The waves admit two 
two-dimensional limits : 0 = 90" corresponds to finite-depth progressive Stokes waves, 
whereas B = 0" corresponds to finite-depth standing waves. Note that two-dimensional 
standing waves are derived from these three-dimensional waves, simply by setting 
a = 0 and /? = 1, while two-dimensional progressive waves are not derived from them 
because non-secularity conditions need to be changed (see Hsu et al. 1979). For the 
standing wave limit, we recovered solutions given by Tadjbakhsh & Keller (1960), 
while Verma & Keller (1962) did not reach these pure standing wave solutions because 
they used another dimensionalization, thus changing the non-secularity conditions. In 
the following study, expansions up to the 35th order have been computed. In figure 1 
two surface wave shapes are plotted for a wave steepness h = 0.20, angle 6 = 40°, and 
depths d = 0.8 and d = 2.0. As the water becomes shallower, the high-order terms in 
the perturbation expansion grow in size (relative to low-order terms), and tend to 
flatten more of the sea surface while steepening some slopes. This explains the fact that, 
as the water becomes shallower, the convergence of the perturbation series becomes 
slower. 

The problem of the convergence of our series is a crucial question broadly discussed 
in Roberts (1983) and Marchant & Roberts (1987). For deep-water flow, Roberts 
(1983) showed, in a linear description, how a wave harmonic ( + J , K ) ,  i.e. 
c J K  sin ( J a s )  cos (Kpy)  eY./K *, travelling at the same phase speed in the x-direction as the 
fundamental ( f 1, l), could grow linearly in time through harmonic resonance. In 
other words, the harmonic ( f J,  K )  is a homogeneous solution of the linear differential 
equations. These resonances occur under the condition 

(a2J2 + 10)2K2)1i4 = J ,  (2.9) 

which is equivalent to the condition of resonance on the angle O H R :  

(2.10) 

Table 1, taken from Roberts (1983), gives 'resonant' angles H H R  for a deep-water flow 
up to order N = 15 of truncation. These critical angles correspond to harmonic 
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K 

3 
4 
5 
6 
7 
8 
9 

10 
11  
12 
13 
14 
15 

J =  1 

90.0000 

90.0000 

90.0000 

90.0000 

90.0000 

90.0000 

90.0000 

~ 

~ 

- 

~ 

~ 

~ 

J = 2  

0.0000 

52.2388 

63.4349 

69.2952 

73.9761 

75.5225 

~~ 

- 

- 

- 

-. 

.- 

- 

J = 3  

.~ 

00.0000 

36.6992 

47.8696 

54.7356 

- 

-~ 

- 

TABLE 1. Harmonic resonance angles OH, (in degrees) in deep water 
up to order of truncation N = 15, from Roberts (1983). 

resonances of the linear wave ( h  = 0). Considering increasingly higher harmonic 
resonances, J and K -  GO, we find that the expansions formally have everywhere a zero 
radius of convergence. However, for most angles most of these resonances occur at an 
extremely high order - in a finite truncation the coefficients of the expansions will 
generally be subject to small divisors (and not to zero divisors). These small divisors 
cause the expansions to be summable, to some level of accuracy, for wave steepnesses 
h,  so that h < h*, where h* is the distance to the nearest noticeable resonance. We 
truncate our series at an order J so that the contributions of all the next orders 
(> J +  1) tend to zero (the most important is here of order h3”. The remainder O(hJ+l) 
does not necessarily tend to zero and thus we cannot assert that our series do converge. 
However, above h*, Pade approximation and Shanks transform are used to sum the 
series: Pade approximants place a simple pole (and a nearby corresponding zero) at the 
singularities of the expansions in h, which are due to harmonic resonances. They will 
often converge to a solution of the original expansions for h greater than h*, see 
Gilewicz (1978). As mentioned in Roberts (19831, near these pole singularities, due to 
harmonic resonances, in general three distinct solutions exist, see Roberts (1981). So 
by crossing h*, for increasing h, the derived solution will jump from one branch to 
another. However, Pade approximants select one branch of the solutions and the 
‘distance’ between the different solution branches is of order hmnrcJ ,  K ) i 3 ,  see Roberts 
(1983) and Marchant & Roberts (1987) for finite-depth short-crested waves. By 
truncating the expansions at order 35 and by using Pad6 approximation one can expect 
that our solutions T(x, y )  and $(x, y, z )  are approximate short-crested wave fields, 
although the ‘distance’ between our solutions and short-crested waves is not estimated 
in the present study and despite their currently being no rigorous proof of the existence 
of short-crested waves of permanent form. 

2.3. The unsteadl) perturbations problem 
The set of equations of first order, given below, governs the flow of any unsteady 
perturbations. Note that all partial time derivatives of the unperturbed solutions (v,$) 
vanish in this new frame of reference, since it propagates at the same wave speed as the 
unperturbed wave (in particular, the term gt2, derived from the expansion of q5t around 
7, vanishes in this propagating frame of reference). This set describes the interaction 
mechanisms between the steady flow and small unsteady perturbations, in other words 
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the wave-wave interactions. We compute solutions of this set to determine the 
instabilities of the basic wave: 

V“’ = 0 for - d < z < q(.x,y), (2.11) 

q $ = O  on z = - d ,  (2.12) 

(2.13) I (2.14) 

Extending the procedure of IK 93 to finite-depth fluid, we look for non-trivial solutions 
of (2.11)-(2.14) of the form 

on z = ~ ( x ,  y ) .  4; = -6JK - 6 y 4 ;  I$*#; - (1 + 6x6T, + 6&/z + 6*A,,)s’ 
s; = (L- %6n- q,$,,, v ‘ -  %4: )I:- 7&;- 6y v;  + $K 

s a.fK 
R=O 

cosh [ K ~ , ( z  + d ) ]  
cosh ( K ~ ,  d )  

(2.15) 

where K ~ ,  = [(Ja)2 + (K,!l)2]1”L. 
Since we confine our attention to superharmonic instabilities, the perturbations are 

chosen to be of the same harmonic structure as the unperturbed flow. Instabilities 
caused by harmonic resonances correspond to interactions between the two 
components of the fundamental mode ( &  1, I )  and two components of a higher 
harmonic ( k J ,  K ) .  The symmetry of the flow with respect to the vertical sea wall allows 
us to consider K 2 0 only. 

The stability analysis consists in determining the coefficients aJ,, b,, and the set of 
eigenvalues cr. Since the system of equations (3.1 1 k(2.14) is real valued, the eigenvalues 
cr appear in complex-conjugate pairs. Thus an instability corresponds to Im(a) $: 0. 
The numerical scheme used for the solution of equations (2.1 1)-(2.14) is described 
below. 

3. Numerical scheme 
The numerical scheme is the extension to finite-depth fluid of the procedure 

developed by IK 93,94 for deep water. The series (2.15) are truncated up to harmonics 
A4 and N ,  and the basic wave solutions given by Marchant & Roberts (1987) are 
obtained up to the 35th order in h, then both expansions are substituted into the 
surface conditions (2.13) and (2.14). Finally, since unperturbed solutions of permanent 
form are obtained numerically by an intensive use of Pad6 approximation, the 
perturbation equations lead to a homogeneous generalized eigenvalue problem of the 
form: Au = icrBu, where cr is the set of eigenvalues to be computed with the 
corresponding eigenvectors u = (aJR ,  bJ,)t. A and B are complex matrices, functions 
of the basic flow. The eigen-analysis is expected to be about as accurate as the 
numerical solutions for the basic wave - residuals in the equations do not strongly 
affect the eigen-problem. IK 93, 94 used both collocation and Galerkin methods to 
solve the eigenvalue problem. They found the latter method to be much more efficient, 
because it dissociates explicitly the discretization of the collocation points and the 
order ( M , N )  of truncation of the eigenmodes. This result has also been noted by 
Bryant (1985), when computing doubly periodic waves, and later by Zhang & Melville 
(1987) for the study of the stability of gravity-capillary waves. For that reason, the 
Galerkin method is used in this paper to solve the eigen-problem. Taking advantage 
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of the periodicity of both the basic wave solutions and the eigenmodes, equations (2.13) 
and (2.14) are numerically integrated over one space period in the two horizontal 
directions using Fourier transforms over a set of L’ x p points whose coordinates are 

2x14 27C2’ 

ol 1’ - PP 
x, = __ for 11 = 0, ..., 1 ’ -  1, and I ’ ~ ,  = __ for I‘ = 0, ..., p-  1. 

The functions 
1.-1 / I F 1  

p p f 
u=o l’=u 

eiz(J-l) . x t L  ei,d(K-r) Y,, 
Fi-l., K-r { . f J K )  = d d J K  

where 1 = - M ,  . . ., M and r = - N ,  . . ., N ,  are computed using two-dimensional fast 
Fourier transforms. The integers 1’ and ,u are increased until the Fourier coefficients 
converge; thus the surface perturbation is consistently described. Convergence of the 
eigenvalues and eigenvectors is then obtained by increasing M and N .  The reader 
should refer to IK 93 to get full numerical and computational details of the method, 
since the numerical scheme is little changed in extending it to finite-depth water. It is 
also worth noting that an increase of the order of truncation past the 35th order does 
not affect the convergence of the eigenvalue problem until depth d = 0.5. The runs are 
sequential and each one creates the parameters for the next run. A standard sequence 
requires about twenty runs. Thus, the use of a CRAY-YMP supercomputer, with 
special attention given to the vectorization of the numerical code, was necessary since 
a standard run takes five minutes. 

4. Numerical analysis 
4.1. Introduction 

IK 93, in performing a stability analysis, discovered that harmonic resonances 
correspond to class Ia(J, K )  superharmonic ‘bubbles’ of instability, which are very 
weak and sporadic in the wave steepness range (see IK 94 for a definition of three- 



8 M .  louulalen, A .  J .  Roberts and C. Kharif' 

dimensional classes of instability associated with symmetric short-crested waves). They 
explained these resonances as a process involving a collision of two superharmonic 
modes ( J ,  K )  and ( - J ,  K )  at zero frequency (phase locked with the unperturbed wave: 
Re(n) = 0 for both superharmonic eigenmodes). The authors found that for deep 
water, the growth rates (IIm(n)l) are lower than h", and occur over a range of h (for 
which Re(n) = 0) of width smaller than h2%' for the strongest instabilities. Since the 
lowest-order harmonic resonances correspond to J = 2 (see table l) ,  i.e. resonances 
( 5  2,4), (k 2,6), ( +_ 2,8), . . ., (i) the strongest instabilities have growth rates of order 
lower than h4, so that they are weak compared to subharmonic instabilities (of order 
h'), and (ii) the h-range of instability (the h-width of the 'bubble') is at most of order 
h4 as well, so that these superharmonic instabilities are sporadic. They found 
restabilization past the bubble of instability, as the frequencies leave the zero- 
frequency axis. Each instability bubble is centred on an h-value which is very close 
to the pole of the truncated series calculated by Roberts (1983). One should refer to IK 
93 for a description of the collision mechanisms, as they are the same for finite-depth 
water. 

These resonances still exist for finite-depth water. They are generated when 
harmonic ( k J ,  K ) ,  i.e. cJK sin (Jax) cos (Kfiy) cosh [yJK(z  + d)J/cosh (yJR d), is a sol- 
ution of the homogeneous linear differential equations governing the finite-depth flow. 
The new condition of harmonic resonance is then 

(4.1) 

Table 2 gives angles of resonance B,,, in the linear case, for three depths d = 2, 1 and 
0.5 up to the harmonic N = 15. For all depths, tables 1 and 2 have in common: (i) an 
infinite number of resonances at 8 = 90" ( J  = l), and (ii) as the order N of truncation 
increases, the number of harmonic resonances increases. For N -  cn, a resonance, and 
hence zero divisor, will occur arbitrarily near every angle between B = 0" and 90°, in 
a linear description. Therefore the perturbation series has an everywhere zero radius of 
convergence. However IK 93 showed that, for nonlinear short-crested waves, high- 
order harmonic resonances need not be considered, since the growth rates in their 
instability bubble are not significant. 

The purpose of the present study is to analyse numerically the stability of finite- 
depth short-crested water waves to superharmonic perturbations, in order to provide 
accurate time scales (proportional to the inverse growth rates) of these harmonic 
resonances and to analyse the contribution of the depth parameter d. The new 
harmonic resonances, appearing because of the finite depth d, are also analysed, in 
particular those associated with the standing wave limit, 8 = 0". These particular 
resonances are given in table 3 up to the order N = 20 of truncation and are calculated 
from the resonance condition 

y J K  tanh ( y J K  d )  = J 2  tanh (d). 

tanh (Kd) 
J 2  = K 

tanh ( d )  ' 

4.2. Stability analysis 
For h = 0, the unperturbed wave is given by 
tanhl" (d)/a. Then the eigenvalues are 

= 0 and I$ = - c,, x with c,, = w,/. = 

n,"IK = - ( J a ) c , , + s [ ~ ~ ~ t a n h ( ~ , , d ) ] " ~ ,  s = k 1, (4.3) 
where the signature of the perturbation is defined as sign [s Im ( -in)], see MacKay & 
Saffman (1986). The set of eigenvalues {v ;~)  is neutrally stable for h = 0. Instabilities 
may arise when the wave steepness h is non-zero. We use the approach of IK 93, which 
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K 

( a )  3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

( b )  3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

(c) 3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

J =  I 

90.0000 

90.0000 

90.0000 

90.0000 

90.0000 

90.0000 

90.0000 

90.0000 

90.0000 

90.0000 

90.0000 

90.0000 

90.0000 

90.0000 

90.0000 

90.0000 

90.0000 

90.0000 

90.0000 

90.0000 

90.0000 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

J = 2  
- 

71.8333 

78.9931 

8 1.9849 

83.67 13 

84.7627 

85.5295 

- 

- 

- 

- 

- 

- 

- 

48.0500 

65.8354 

72.6052 

76.3291 

78.7 137 

80.3795 

- 

- 

- 

- 

- 

- 

- 

17.8737 

54.351 1 

64.8095 

70.3369 

73.82 10 

76.1354 

- 

- 

- 

- 

- 

- 

J =  3 
- 

- 

40.3734 

61.1950 

68.9529 

73.2648 

76.0594 

78.0331 

- 

- 

- 

- 

- 

- 

- 

- 
- 

12.9790 

43.4217 

54.3842 

60.84 16 

65.2072 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 
16.3751 

39.7 124 

49.9385 

56.3629 

- 

- 

- 

TABLE 2. Harmonic resonance angles O H ,  (in degrees) for finite depth flow up to order N = 15 of 
truncation for depths (a)  d = 0.5, ( b )  d = 1.0, (c) d = 2.0. 

takes advantage of the work of MacKay & Saffman (1986) on Hamiltonian systems, 
and we apply the necessary condition for instability in terms of eigenvalue collisions of 
opposite signatures (s) or at zero frequency. An instability can arise if, for some wave 
steepness h, two modes have the same frequency: 

G K l ( h )  = C&(h). (4.4) 

After substituting (4.3) into (4.4), and bearing in mind that a harmonic resonance 
( J , K )  corresponds to a collision of two eigenmodes ( J ,  K )  and ( - J , K ) ,  i.e. 
Kl = K2 = K and J1 = - J2 = J ,  we obtain 

(4.5) K~~ tanh ( K ~ ~  d )  = J2a2c; = J 2  tanh ( d ) ,  
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which is equivalent to condition (4.1). In the case of standing wave harmonic 
resonances, at angle f-) = O", for which a = 0, b = 1, and so K , , ~  = K, we simply obtain 
(4.2). 

These instabilities belong to class Ia (m = J, K )  and, in a fixed frame of reference, 
they can be interpreted as a resonance between the two eigenmodes k ,  and k ,  and the 
2m-components k,,, and k,, of the unperturbed wave: 

Ql = - Q, + JQ,,, + JQ,,,, 

k ,  = k ,  + Jk,,, + Jk,,, 

with Qi = lki11/2 tanh", ( d K J K ) ,  and QOi = lk,i\1'2 tanh'/2(dK11), for i = 1,2, and 
k ,  = (Ja, KP)', k ,  = ( - J z ,Kb) ' ,  k,,, = (a,P)', k,,, = (a ,  -8)'. Once the poles of the 
expansion series have been calculated using Pade approximation, we perform the 
computations in their vicinity : the maximum growth rates and bands of instability in 
h are then determined by solving the eigenvalue problem. 

5. Numerical results 
IK 93 showed that the strongest superharmonic instabilities for deep water are of 

class Ia ( J  = 2, K ) .  We focus our numerical study on the harmonic resonance ( f 2,6), 
bearing in mind that, apart from (&2,4),  all other ( + 2 ,  K )  resonances are of higher 
order, and the (&  J ,  K )  resonances for J > 2, are weaker, see IK 93. For that reason, 
it is not necessary to carry out an extensive parametric study over a wide range of 
harmonic resonances ( k J ,  K ) ,  depths d and wave steepnesses h. We present a partial 
answer to the following crucial question: is a short-crested wave field, perturbed by 
superharmonic perturbations, observable? In other words, is a perturbed field such as 
this, likely to keep its harmonic shape unchanged (without taking modulational 
variations into consideration)? The study of superharmonic instabilities provides us 
with their time scales, and thus we determine whether the high-order harmonics of the 
perturbed wave can become dominant compared to its fundamental mode, or whether 
the fundamental wave keeps its harmonic structure nearly unchanged. 

Two-dimensional Stokes waves are primarily unstable to subharmonic modulational 
instabilities. These waves are not subject to superharmonic instabilities, except near 
breaking and except for the weak and sporadic instabilities identified by Kharif & 
Ramamonjiarisoa (1988, 1990), so that, without taking modulational instabilities into 
account, they are observable. IK 93 named the perturbed short-crested waves on deep 
water quasi-permanent because the associated superharmonic instabilities are very 
weak and 'sporadic ' compared to the dominant modulational instabilities. For that 
reason, they are not likely to develop, except over very long time scales: the variation 
of this wave field due to harmonic resonances is very slow in time. For the case of finite- 
depth short-crested waves, the study of ( + 2 , 6 )  resonance will provide us with such 
information, since it is one of the strongest harmonic resonances, see IK 93. 

5.1. Harmonic resonance in esperiments 
In figure 2 are plotted linear (for h = 0) harmonic resonance curves derived from 
equation (4.1) in the (d, @-plane for the most significant harmonic resonances (low- 
order resonances) : only resonances ( & 3,9), ( & 2,4), ( & 2,6), ( f 2,8) and ( & 210)  are 
considered in this section; resonances ( +4,6), ( f 3 , 5 )  and ( f 3,7) corresponding to 
the standing wave limit are analysed in $5.3. Experiments of Hammack et al. (1989) are 
also renorted for reference. In this section we concentrate on the parameter regime in 
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FIGURE 2. Location of linear harmonic resonances for the strongest instabilities (k 2, 4), (i 2, 6 ) ,  
(+2,8) ,  ( k 2, lo), ( f 3,  5) .  ( f 3, 7), ( f 3,9) and ( f 4, 6). Experiments of Hammack et a/. (1989) are 
also shown for comparison: KPxxO7, KPxxl 1 and KPxxl5 with xx increasing from right to left. 

the right-hand half of the figure; a region encompassing the experiments and where the 
harmonic resonances are generally of low order. In this parameter regime, the region 
of instability associated with the ( & J ,  K )  resonance occurs immediately to the right of 
the curve labelled ( J ,  K ) ,  see IK 93; for a given depth d, a harmonic resonance on 
finite-amplitude waves can appear only for angles greater than the associated angle of 
resonance O H ,  - the bubble of instability occurring in some range of h-values. Angle 
0 increases from O H ,  with the h-position of the centre of the bubble: since a harmonic 
resonance is physically meaningful only for h smaller than the value h,,, for which the 
wave is breaking, the resonance can be observed only near the range of 0 such that 
O H ,  < 8 < Ob = O,,+SH,  where 0, represents the angle at which the bubble of 
instability should appear at the wave steepness corresponding to the maximum wave 
steepness of the wave considered. Thus, SO would be the width of the band of instability 
to the right of the curves in figure 2 for a given depth d. SO is approximately 2" in deep 
water, 1.2" for d = 1 and 0.2" for d = 0.5. These approximate values are not reported 
in figure 2 because they are extrapolated from our computations (up to h = 0.30 wave 
steepness) using the highest-wave steepnesses of short-crested waves given by Marchant 
& Roberts (1987). While increasing H from H, ,  to OH,+60, the centre of the bubble 
of instability shifts from zero to h,,,. The extremely weak H-band of instability might 
be the reason why Hammack et al. (1989) have not directly observed these instabilities. 
Moreover an experiment may lie in the narrow band and yet may not be the location 
of a superharmonic instability if the experimental wave steepness does not fit the 
numerical one (the width of the bubbles is given in $5.3). This point may be 
demonstrated by the following example : for harmonic resonance ( & 2,6) and depth 
d = 1, the angle of resonance is H , ,  = 65.8354" at wave steepness h = 0;  for angle 
0 = 66.2" the maximum growth rate (0.32 x lo-') is obtained at wave steepness 
h = 0.194, and for angle H = 66.3" it is of amplitude 0.13 x lo-' and is obtained at wave 
steepness h = 0.299. Obviously an uncertainty of 0.1" for H in experiments can lead to 
an uncertainty of S h  = 0.10 for the wave steepness required to observe an harmonic 
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resonance. This clearly shows that the experimental wave steepness may lie outside the 
theoretical bubble of instability that is predicted by the present computations owing to 
experimental uncertainties. 

However, a detailed examination of the data reported by Hammack et al. (1989) 
implicates harmonic resonance in some of the features of their results. Consider the 
error of their fit of data to genus 2 solutions of the Kadomtsev-Petviashvili (KP) 
equation. In the regime of the experiments, the effects of harmonic resonance lie 
primarily to the right of the curves drawn in figure 2. Thus, as listed in the caption to 
figure 3, we identified which low-order resonance plotted in figure 2 lies immediately 
to the left of the different experimental parameter values. Then we crudely estimate the 
importance of that resonance by computing the divisor that would appear in an 
asymptotic expansion, namely the difference between the right-hand and left-hand 
sides of (4.1). For each experiment listed in table 2 by Hammack et al. (1989), we plot 
in figure 3 their r.m.s. error versus the computed divisor. Observe the clear decrease 
in error with distance from resonance as measured by the divisor. This trend is also 
strong in the KP.ux07 and KPxx15 series of experiments when each series is considered 
separately - one reason for the lower level in overall error for the KPxsl5 series is that 
the wave steepness of these experiments, approximately kfm,,/2 z 0.08, is lower than 
the wave steepness, approximately 0.18, of the KPxx07 experiments. 

There is also evidence of the resonance in the time traces shown in figure 9(c) of 
Hammack et al. (1989). Computing the period of the harmonic we estimate that there 
should be approximately 2.1 cycles of the excited harmonic per cycle of the 
fundamental wave. It is not hard to imagine that many of the deviations from theory 
that are recorded in the experiment have twice the frequency of the fundamental 
(especially at gauges 2 to 6). The other traces shown in their figure 9 are not suitable 
for showing resonance : trace (a) is of experiment KP 15 15 which has been identified as 
the furthest from resonance; and (b) is of KP1007 for which an involvement with (2, 
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FIGURE 4. The maximum growth rates versus the wave steepness h for superharmonic instabilities of 
class Ia ( J  = 2, K = 6) in a log-log plot. Resiilts for seven depths are reported (there is only one 
isolated point for depths d =  0.8, 0.7, 0.6, 0 5 ) .  

10) resonance is the most dubious owing to its relatively high order. In summary, the 
experiments show faint but strongly suggestive evidence of the influence of harmonic 
resonance. 

5.2. The (2,6) resoname 
Figure 4 shows growth rates of the (2,6) resonance for different depths (d+ 00, d = 2, 
1, 0.8, 0.7, 0.6 and 0.5) and an example of the bubble of instability is displayed in 
figure 5 (6' = 65.9' for which O H R  = 65.8354'). The dashed curves h2 and h4 are added 
for reference, since they are the maximum growth rates of modulational instabilities 
and superharmonic instabilities for deep-water short-crested waves, respectively, see 
IK 93, 94. As the water becomes shallower, the superharmonic instabilities become 
considerably stronger. This result is not surprising, since high-order harmonics 
(associated with harmonic resonances) become larger in amplitude with decreasing 
depth. Moreover, for depths around d = 0.5, superharmonic instabilities have growth 
rates of order h2 comparable to those of classes Ia, b (J = 1,  K = f 1 ) modulational 
instabilities in deep water computed by IK 94. This result is important, since it 
suggests that short-crested waves, perturbed by superharmonic modes in finite depth, 
can no longer be quasi-permanent although the bands of instability are of very limited 
extent in the parameter d, 8, h space. 

From this study, we think that the best way to localize these instabilities 
experimentally is to increase very slightly angle 0, starting from O H , ,  for a given depth 
and wave steepness in order to ensure that the h-band of instability has been covered. 
Considering the limited size of the experimental tunnel, small depths (around d = 0.5), 
i.e. high growth rates, are obviously more suitable. 

One feature to note in the experiments of Hammack et al. (1989), is that any forced 
harmonic wave generally escapes out of their short-crested wave field through the sides. 
Some simple ray theory indicates that the temporal growth rates in an infinite field 
(reported herein), when translated to spatial growth rates in a finite field, width w, 
are not only reduced by the sideways 'leakage' but only become apparent as a spatial 
instability if the temporal growth rate is above the threshold ncY/(2iv), where cy is the 
transverse component of the group velocity of the harmonic wave. For the experiments 
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5. Frequency (solid line) and growth rate (dashed line) for ( F 2, 6) perturbations as a function 
of wave steepness h for angle 0 = 65.9". 

of Hammack et (11. (1989) this threshold is roughly 0.01 SC' and so for the wave 
steepnesses used in the experiments, in the range 0.08-0.2, our figure 4 indicates that 
only the strongest instabilities could have been observed. Instabilities should be more 
easily observed in a wave tank where the short-crested wave field spans the entire width 
and where reflecting walls trap any generated harmonic. 

5.3. Instabilities associated with standing bi'aves 
Table 3 ,  taken from Marchant & Roberts (1987), gives depth values for harmonic 
resonances in the standing wave limit, 8 = 0". Some aspects of their effects on standing 
waves are shown in figures 2-5 in Mercer & Roberts (1994). In this section, we study 
the strongest (lowest-order) superharmonic instabilities (k 3 , 5 ) ,  in the vicinity of the 
depth dHR = 0.624, where d,, represent in the linear case depths associated with 
harmonic resonances given in table 3 for H = 0" : inJigure 2 are plotted resonances ( -t 3, 
5) ,  ( k 3, 7 )  and ( f 4, 6) associated rvith the stunding waoe limit in the linear case uersus 
angle 8. In figure 6 are plotted the frequencies of perturbations ( f 3 ,  5) ,  for two depths 
d = 0.61 and 0.59 close to dHR, for a flat surface ( h  = 0). For 6' 3 8, or depth ddeeper 
than dHR,  no superharmonic instability is observed on increasing the wave steepness 
from zero. In these cases, frequencies 'repulse' each other, avoiding any collision at 
zero frequency (see figure 7). For 0" < H < H,, and for water shallower than dHR, a 
bubble of instability arises. As the depth decreases, the critical angle 8, shifts to 
increasing values of 8, until it reaches H = 90" for d-0.  As a result, the instabilities 
associated with the standing wave limit spread over the entire 8-range (0"-90") as the 
depth d decreases. Unlike the instabilities described in the previous subsection, on the 
left-hand side of the figure finite-amplitude resonances are located immediately to the 
left of, or below, the resonant curves (as also shown for the ( 5 ,  13) standing wave 
resonance in figure 3 of Mercer & Roberts 1994). For a given angle 8(B < O,), a 
decrease of depth d from d = d H R  will increase the wave steepness for which the bubble 
of instability arises. Instabilities associated with standing wave harmonic resonances, 
those listed in table 3 ,  then appear only for depths such that db = d H R  - Sd < d < dHR, 
where db represents the depth for which the bubble of instability arises at a wave 
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0.211 - 

0.284 - 0.139 

0.347 ~ 0.186 
~ 0.272 - 

0.441 - 0.222 
- 0.317 - 

0.478 - 0.256 

0.550 ~ 0.290 

0.627 - 0.324 

- 

~ 0.169 - 

- 0.226 - 

- 0.362 - 

~ 0.410 - 

0.118 - 

- 0.101 

- 0.135 

- 0.160 

0.157 - 

0.186 -~ 

0.213 - 

- 0.182 
0.239 - 

- 0.303 

- - 
0.118 - 

- 0.104 
0.139 - 

~~ 0.133 
0.158 - 

- 0.139 

TABLE 3. Depths d,, ( > 0.1) at which harmonic resonance occurs for standing waves 0 = 0" up to 
order N = 20 of truncation, from Marchant & Roberts (1987). 

steepness corresponding to the breaking wave steepness of the wave considered. For 
harmonic resonance ( k 3 ,  7), and by extrapolating our results further to h = 0.2, Sd is 
roughly of order 0.1 near 8 = 0". 

Figure 8 shows growth rates as function of angle 8 for two depths d = 0.61 and 0.59. 
The growth rates attain their maximum value for 8 - 0". From this result, one can say 
that the primary instability of finite-depth water waves close to the standing wave limit 
is superharmonic, whereas, see Mercer & Roberts (1992), deep-water standing waves 
are dominated by subharmonic instabilities. The other important result is that these 
instabilities appear to spread and 'contaminate' the whole 0"-90" range of 8 as the 
depth decreases although progressive waves, the extreme of 0 (90"), are unaffected, in 
accordance with results of McLean (1982 b). However, this contamination is not 
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FIGURE 7. Frequencies of the perturbation harmonics ( & 3, 5 )  as a function of the wave steepness h 
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FIGURE 8. The maximum growth rates versus angle 8, for superharmonic instabilities of class Ia 
( J  = 3, K = 5) .  These plots refer to harmonic resonance depth d,,t = 0.614: (a )  d = 0.61, ( b )  d = 0.59. 

necessarily relevant over the whole &span for 0" < 8 < 8,, since the maximum growth 
rates are significantly only in the vicinity of 0 = 0". In particular, these particular 
instabilities are not likely to be evident in the experiments of Hammack et al. (1989) 
as the experiments are located in regions of the (d ,  @-plane where these superharmonic 
instabilities are either not present or very weak (see figure 8). 

Figure 9 shows growth rates of the same instability versus the wave steepness h. We 
have used in this figure the data from figure 8. They are of the same order as those 
measured in the previous subsection. Each point represents the maximum of the 
growth rate of the instability for a given angle between 8 - 0 and 0 = 8, (see figure 6). 
The largest h-values are determined by B +. 0. As 8 is increased, the maximum growth 
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FIGURE 9. The maximum growth rates versus the wave steepness h for class Ia (J  = 3, K = 5 )  
superharmonic instabilities in a log-log plot; results for two depths close to the harmonic resonance 
depth d,, = 0.624. 

rate decreases with the corresponding h-location of the bubble of instability. For that 
reason, it is not practically possible to directly compare growth rates for two different 
depths at the same wave steepness h. However, one can see that the considerable 
increase of the inclination of the two curves in figure 9 for two similar depths (0.61 and 
0.59) suggests that depth is a major aspect; one can expect a greater growth rate for 
shallower water. For that reason, for both kinds of superharmonic instabilities, the 
growth rates and h-ranges of instability can be higher than h2 (generally the h-widths 
of the bubbles are of the same order as the maximum growth rates), even for depths 
reasonably close to dHR,  and can become more significant with depth d decreasing. This 
suggests that for shallower depths and for high wave steepness, the h-range of 
instability will cover almost the whole h-span up to breaking for every ( & J , K )  
resonance, so that we can no longer talk about sporadic bubbles of instability in terms 
of the wave steepness h as in the deep-water case. However, since the band of 
instability in the (d, @)-plane is limited, these bubbles remain sporadic with respect to 
d and 8. From table 3, one can conclude that for water shallower than approximately 
d =  1 and in certain range of Sd, waves close to three-dimensional standing waves 
cannot have permanent form since a strong superharmonic instability arises for 
d < 1.040, through the (i 3, 7) harmonic resonance in the standing wave limit. 

6.  Conclusions 
The work presented here deals with the stability of three-dimensional short-crested 

waves to superharmonic instabilities on water of finite depth. As in the case of deep 
water, these class Ia instabilities are associated with the harmonic resonance 
phenomena described by Roberts (1983) and Marchant & Roberts (1987). In shallow 
water, these instabilities are no longer negligible, since they may be stronger than deep- 
water subharmonic instabilities (of order h2) .  However, the most significant instabilities 
cover a very localized region of the (d, @)-plane, so that we can reasonably consider that 
short-crested waves and long-crested waves ‘close’ to progressive two-dimensional 
waves are observable in general. 

Superharmonic instabilities associated with the standing wave limit are also 
quantified. We found that these instabilities spread out over the entire fully three- 
dimensional flow regime, except for two-dimensional Stokes waves, with maximum 
growth rates occurring for waves ‘close’ to standing waves. From our computations, 
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it is suggested that long-crested waves 'close' to two-dimensional standing waves, 
perturbed by superharmonic instabilities, are not observable for some depths shallower 
than approximately a non-dimensional depth d = 1. 

It will be of interest to compare these results to those of subharmonic instabilities by 
comparing the respective time scales : as water becomes shallower, waves become less 
and less dispersive, which suggests that subharmonic modulational instabilities will 
become weaker than those in deep water. Because of the patterns of growth rates which 
we have determined, one can say that localized superharmonic instabilities will become 
more important in shallower water. Further study on the subharmonic instabilities will 
determine which instability (superharmonic or subharmonic) is dominant. 
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